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A slender body approach to
nonlinear bow waves

B y Emmanuel Fontaine1 and Raymond Cointe2

1Bassin d’Essais des Carènes, 27100 Val de Reuil, France
2Ministère de l’Environnement, 20 avenue de Ségur, 75302 Paris 07 SP, France

The behaviour of the flow near the bow of a slender ship is studied. The fluid is
assumed to be perfect and incompressible and the flow to be irrotational. The for-
malism of matched asymptotic expansion is used to provide a consistent perturbation
procedure for the simplification of the initial problem. The resulting nonlinear free
surface problem describing the flow in the inner domain close to the bow is solved
numerically. Examples of solutions are given for the flows around a wedge shaped
bow and a prismatic planing hull.

1. Introduction

The potential free surface flow around a slender ship has led to many studies based
on a ‘parabolic’ approximation of the equations. This approach, initially introduced
by Ogilvie (1967), consists in reducing the three-dimensional nonlinear stationary
problem to a set of two-dimensional transient problems, which can, in some cir-
cumstances, be linearized. Ogilvie (1972) solved analytically the linear problem and
obtained a simplified solution for the wave profile around a wedge shaped bow. Chap-
man (1975) used a similar theory to study the flow around a flat plate oscillating in
yaw and sway. More recently, this theory was used by Faltinsen & Zhao (1991) to
study the flow around a high speed ship and by Maruo & Song (1994) to study the
bow flow and deck wetness of a ship in waves.

In this paper, we use the method of matched asymptotic expansions to provide
a consistent perturbation procedure for the justification of the ‘parabolic’ approx-
imation for the determination of the free surface flow around a slender ship. This
suggests that this theory can apply either to the flow around a slender ship at high
Froude number based on the length or to the flow near the bow of a slender ship at
high Froude number based on the draught. We show some numerical computations
based on this approximation and using a mixed Eulerian–Lagrangian method to solve
the nonlinear inner problem. We present comparisons with experimental results and
other asymptotic theories.

2. The bow flow: inner problem

(a ) Assumptions and definitions
The fluid is assumed to be incompressible and the flow irrotational. The ship is

defined by its maximum beam b and draught h, see figure 1. The shape of the hull
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Figure 1. Geometrical definitions.

is given by y/b = f(x/L, z/h) where L is the longitudinal length scale. The two
non-dimensional parameters describing the shape of the hull are tanα = b/L and
δ = h/L. The ship will be said to be slender when tanα ' δ � 1, to be thin when
tanα� δ � 1, and to be flat when δ � tanα� 1.

(b ) Simplified equations for a slender ship
To study the flow in the vicinity of the ship, an inner domain is defined on a radial

length scale equal to the draught h and on the longitudinal length scale L. The inner
variables are defined as

x̃ =
x

L
, ŷ =

y

h
, ẑ =

z

h
, ϕ̂ =

ϕ

Ub
, η̂ =

η

b
, (2.1)

where ϕ is the velocity potential and η the free surface elevation. Assuming the ship
to be slender, the following asymptotic expansions are introduced:

ϕ̂(x̃, ŷ, ẑ;α, δ) = µ̂1(α, δ) ϕ̂1(x̃, ŷ, ẑ) + o(µ̂1), (2.2)

η̂(x̃, ŷ;α, δ) = ν̂1(α, δ) η̂1(x̃, ŷ) + o(ν̂1). (2.3)

The principle of least degeneracy allows to determine the gauges µ̂1 and ν̂1, leading
to µ̂1 = δ and ν̂1 = 1. A non-trivial solution for η̂1 can then only be found if

F̂ 2
L =

δU2

gL
> O(1). (2.4)

The leading order perturbation potential ϕ̂1 satisfies the two-dimensional Laplace
equation in the fluid domain of each transverse plane:

∂2ϕ̂1

∂ŷ2 +
∂2ϕ̂1

∂ẑ2 = 0, (2.5)

with the following boundary conditions on the hull ŷ = (tanα/δ)f(x̃, ẑ):

∂f

∂x̃
− ∂ϕ̂1

∂ŷ
+

tanα
δ

∂f

∂ẑ

∂ϕ̂1

∂ẑ
= 0, (2.6)
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and on the free surface ẑ = (tanα/δ)η̂1:

∂η̂1

∂x̃
+

tanα
δ

∂ϕ̂1

∂ŷ
· ∂η̂1

∂ŷ
− ∂ϕ̂1

∂ẑ
= 0 (2.7)

∂ϕ̂1

∂x̃
+

1
2

tanα
δ

((
∂ϕ̂1

∂ŷ

)2

+
(
∂ϕ̂1

∂ẑ

)2)
+
η̂1

F̂ 2
L

= 0 (2.8)

These equations describe the first order inner problem for a slender ship. They also
apply when the ship is assumed to be thin, but in this last case the boundary con-
ditions can moreover be linearized.

(c ) Asymptotic domain of validity
Apart from the slender ship hypothesis, the main assumption leading to the asymp-

totic expansion is given by equation (2.4). If L is the length of the ship, this equation
implies that U must satisfy

FL =
U√
gL
> 1√

δ
=

√
L

h
. (2.9)

This confirms that these asymptotic equations can be applied to study the flow
around a slender high speed ship (Chapman 1975; Faltinsen & Zhao 1991). When
the Froude number FL is much larger than 1/

√
δ, the effects of gravity can moreover

be neglected. This case corresponds in practice to the flow around a planing hull
(e.g. Tulin 1956).

Even for a slower ship, this approximation also applies at a distance L from the
bow if L is chosen so that

L 6 U
√
h

g
= hFh, Fh =

U√
gh
. (2.10)

This equation gives the order of magnitude of L for the approximation to remain
valid as long as the ship is assumed to be slender or thin. These hypotheses require
that

Fh � 1. (2.11)
This asymptotic theory can therefore also be applied to study the flow around the
bow of a slender ship if the draught Froude number is much greater than one.

3. The far field flow: outer problem

The inner solution only satisfies the two-dimensionnal Laplace equation. It cannot
therefore be valid far from the ship. Boundary conditions at infinity for the inner
problem must be provided by a matching condition with an outer solution.

The outer domain is defined on the length scale L:

x̃ =
x

L
, ỹ =

y

L
= δ ŷ, z̃ =

z

L
= δẑ, η̃ = η̂, ϕ̃ = ϕ̂, (3.1)

and the following asymptotic expansion is performed:

ϕ̃(x̃, ỹ, z̃;α, δ) = µ̃1(α, δ) ϕ̃1(x̃, ỹ, z̃) + o(µ̃1), (3.2)

η̃(x̃, ỹ;α, δ) = ν̃1(α, δ) η̂1(x̃, ỹ) + o(ν̃1). (3.3)
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Figure 2. Matching procedure.

The outer domain equations are obtained using the principle of least degeneracy,
leading to µ̃1 = ν̃1, the three-dimensional Laplace equation in the fluid domain and
the free surface boundary conditions

∂ϕ̃1

∂x̃
(x̃, ỹ, 0) = 0,

[
∂η̃1

∂x̃
− ∂ϕ̃1

∂z̃

]
(`x̃, ỹ, 0) = 0. (3.4)

The general solution of this problem can be found as a multipole expansion (Ward
1955):

ϕ̃1(x̃, r̃, θ) =
∞∑
n=1

sin(nθ)
r̃n

∫ ∞
0

[
√

(x̃− s)2 + r̃2 + x̃− s]n√
(x̃− s)2 + r̃2

fn(s) ds. (3.5)

As r̃ goes to zero, this leads to the following expansion (for x̃ 6= 0):

lim
r̃→0

ϕ̃1(x̃, r̃, θ) =
∞∑
n=1

2n sin(nθ)
r̃n

∫ x̃

0
(x̃− s)n−1fn(s) ds(1 + o(1)). (3.6)

This asymptotic expansion is uniformly valid for all negative values of x̃. On the
body, the outer solution is singular and must be matched to the inner solution.
The unknown multipole intensity fn(x̃) and order of magnitude µ̃1, ν̃1 of the outer
solution are thus to be determined from the matching.

4. Matching

(a ) The intermediate domain
The inner problem is nonlinear and cannot be solved analytically. It is therefore

not possible to give an analytical description of the behaviour at infinity of the inner
solution. In order to match the inner and outer solutions, an intermediate domain
(Kaplun & Lagerstrom 1957) is introduced. The intermediate solution must match
the inner solution at the origin and the outer solution at infinity.

The intermediate variables are defined as

r̄ =
r̃

ζ(δ)
, ȳ =

ỹ

ζ(δ)
, z̄ =

z̃

ζ(δ)
, ϕ̄ = ϕ̃, η̄ = η̃, (4.1)
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with δ � ζ(δ)� 1 and the following asymptotic expansion is assumed:

ϕ̄(x̃, r̄, θ;α, δ) = µ̄1(α, δ) ϕ̄1(x̃, r̄, θ) + o(µ̄1), (4.2)

η̄(x̃, ȳ;α, δ) = ν̄1(α, δ) η̄1(x̃, ȳ) + o(ν̄1). (4.3)

The principle of least degeneracy implies µ̄1 = ζ ν̄1. Because of the dilatation of the
transverse coordinates in the intermediate domain (ζ � 1), ϕ̄1 satisfies the two-
dimensional Laplace equation with the free surface conditions

ϕ̄1(x̃, ȳ, 0) = 0,
[
∂η̄1

∂x̃
− ∂ϕ̄1

∂z̄

]
(x̃, ȳ, 0) = 0. (4.4)

Thus ϕ̄1 satisfies the simpler aspects of each of the two asymptotic solutions, i.e. the
two-dimensional Laplace equation of the inner problem and the linear boundary con-
ditions of the outer problem. The general solution of this problem can be expressed
in term of a Laurent expansion:

ϕ̄1(x̃, r̄, θ) =
∞∑
n=1

sin(nθ)
[
An(x̃)
r̄n

+Bn(x̃)r̄n
]
. (4.5)

(b ) Matching the various solutions
Matching the intermediate to outer solutions leads one to retain only the first term

(n = 1) of the two multipole expansions (4.5) and (3.5). Thus, the outer perturbation
potential is represented by a vertical three-dimensional dipole distribution on the x̃
axis. In order to satisfy the outer free surface condition, the dipole intensity µ must
be constant, equal to µw in the wake behind the the ship. Then,

ϕ̃1 =
∫ 1

0
−µ(s)

4π
r̃ sin(θ)

[(x̃− s)2 + r̃2]
3
2

ds− µw

4π
sin(θ)
r̃

(
1 +

x̃− 1√
(x̃− 1)2 + r̃2

)
, (4.6)

η̃1 =
1
ỹ2

∫ 1

0
−µ(s)

4π

[
1 +

x̃− s√
(x̃− s)2 + ỹ2

]
ds

− µw

4πỹ2

[
x̃− 1 +

√
(x̃− 1)2 + ỹ2

]
. (4.7)

Matching the intermediate and the inner solutions gives the order of magnitude of
the outer solution as µ̃1 = ν̃1 = δ2 and the behaviour of the inner solution at infinity:

lim
r̂→∞

ϕ̂1(x̃, r̂, θ) = −µ(x̃)
2π
· sin(θ)

r̂
, (4.8)

The inner potential behaves like a two-dimensional vertical dipole whose intensity
µ(x̃) is equal to the three-dimensional dipole intensity of the outer solution. Matching
the free surface elevations at infinity enables one to conclude that the inner free
surface elevation decreases as the inverse square of the distance:

lim
ŷ→∞

η̂1(x̃, ŷ) =
1
ŷ2

∫ x̃

0
− µ(s)

2π
ds (4.9)

Since the outer solution remains valid in the inner domain in front of the ship
(x̃ < 0), the initial conditions of the inner problem are found by matching directly
the inner solution to the outer one. This matching condition, which is discussed in
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Figure 3. Formulation of the inners problems in a reference framed fixed with respect to the
fluid: slender ship (left), thin ship (right)

more details in Fontaine (1996), leads to:

η̂1(x̃ = 0, ŷ) = 0, ϕ̂1(x̃ = 0, ŷ, ẑ = 0) = 0. (4.10)

As a consequence, in front of the ship, the fluid is at rest and the free surface is not
perturbed. At leading order, the outer solution does not influence the inner one. The
only interaction that appears between the strips is due to the free surface conditions.

5. Numerical solution of the inner problem

Consider an observer fixed in a tranverse plane, perpendicular to the velocity U
and translating with the uniform stream, see figure 3. For this observer, the two-
dimensional inner flow appears to be generated by the change of area of the section
of the ship that crosses the tranverse plane. Thus, the ship can be considered as a two-
dimensional wave maker that generates nonlinear waves. The variable x̃ corresponds
to time and this theory is classically called ‘2D+t’.

To solve numerically the inner problem, we use a Mixed Eulerian–Lagrangian
method (MEL) similar to that introduced by Longuet-Higgins & Cokelet (1976)
based on the Sindbad code (Cointe 1990).

The free surface boundary conditions (2.7)–(2.8) are reformulated using a La-
grangian description. They are written for fluid particles on the free surface (X =
(y, z) ∈ Γd(t)) and the associated potential ϕ(X), yielding

Dϕ

Dt
= −gz +

1
2

[(
∂ϕ

∂s

)2

+
(
∂ϕ

∂n

)2]
, (5.1)

DX

Dt
=
∂ϕ

∂s
s+

∂ϕ

∂n
n, (5.2)

where D is used to indicate a material derivative and s and n are vectors tangent
and normal to the free surface, respectively.

A Neumann boundary condition is imposed on the hull as a result of the body
boundary condition (2.6) as well as on the axes of symmetry below the ship.

Far from the ship, the fluid domain is bounded by a control surface Γr on which is
applied the matching condition with the outer solution. For a circular surface control,
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equation (4.8) leads to a Robin–Fourier condition:

ϕ+ r
∂ϕ

∂n
= 0. (5.3)

The kinematic constraint ∆ϕ = 0 with the boundary condition on Γn and Γr
permits the free surface boundary conditions (5.1) and (5.2) to be expressed as an
evolution equation for (ϕ,X). This stems from the fact that, if at a given time t, ϕ is
known along Γd and ϕn is known along Γn, then ϕn can be computed along the free
surface and the right-hand side of (5.1)–(5.2) can be evaluated. For that purpose, we
use the integral equation

θ(M)ϕ(M) =
∫

Σ

[
ϕ(P )

∂G

∂nP
(M,P )− ∂ϕ

∂nP
(P )G(M,P )

]
dsP , (5.4)

where M is a point on the boundary, G is the simple source Green function, θ(M) is
the included angle, or the angle between two tangents of the boundary at M (equal
to π for a smooth curve) and s a curvilinear abscissa along Σ = Γn + Γd + Γr.
Equation (5.4) is discretized using a standard collocation method. The boundary of
the domain is approximated by segments and ϕ and ϕn are assumed to vary linearly
along each segment. This allows an analytical integration of the Green’s function,
its normal derivative and their products along the curvilinear abscissa so that the
calculation is rather simple and vectorizes well. The resulting linear system is solved
using an iterative method (GMRes) starting from the solution at the preceeding time
step.

The resulting evolution equations are solved numerically using standard time-
stepping procedures, such as a fourth-order Runge–Kutta algorithm.

6. Applications

(a ) Flow around a wedge shaped bow
Experiments have been carried out for a wedge shaped bow (Fontaine et al. 1995).

The comparison with theory shows that if the linear thin ship theory (Ogilvie 1972)
gives adequate predictions of the characteristic length scales of the wave pattern, it
underpredicts the bow wave amplitude. The present numerical computations based
on the nonlinear slender ship theory are in much better agreement with experiments
(see figure 4) except at the nose where an initial wave elevation is measured. The
failure of the linear thin ship theory is due to the fact that a wedge shaped bow can
never be assumed to be thin because the theoretical fluid acceleration is not finite
at its ‘nose’ (Fontaine 1996).

(b ) Flow around a prismatic planing hull
For such a flow, there is no length scale characteristic of the geometry of the

hull. In a domain near the nose, i.e. for gx/U2 � 1, gravity can be neglected and
dimensional analysis implies that the flow is self-similar. The planing problem is then
comparable to the two-dimensional gravity-free impact problem.

It can been shown (Fontaine 1996), using the formalism of matched asymptotic
expansions, that the first order composite solution describing the flow during the
water entry of a wedge with small deadrise angle (e.g. Cointe & Armand 1987;
Howison et al. 1991; Cointe 1991) is also a solution of the inner problem for the flow
around a flat prismatic hull (see figure 5). This justifies the pioneering results of
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Figure 4. Non-dimensionnal wave profile along the wedge shaped bow.
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Figure 6. Stucture of the flow around a flat V shaped planing hull.

Wagner (1932). Moreover, it allows the flow near the planing hull to be determined,
see figure 6. Far from the prismatic hull, the three-dimensional flow is given by the
outer solution defined in section 4.

Near the hull, the two-dimensional inner solution corresponds to the flow around
a flat plate normal to the upstream velocity and of width equal to the wetted width
of the hull section. This flow is singular at the extremities of the plate and the inner
solution is matched to a nonlinear solution describing the spray root. This nonlinear
solution involves a jet with constant thickness and velocity. This latter solution is
matched to another one describing the development of the jet along the hull. At
leading order, the thickness of the jet is linearly decreasing along the hull, the fluid
velocity in the jet is constant, and the length of the jet is equal to half the wetted
width. The angle between the jet limit and the stagnation line is then equal to the
angle between the stagnation line and the symmetry axis of the ship.
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Figure 7. Evolution of the free surface elevation near a prismatic hull (θ = 45◦).

The analytical solution describing the jet has been used to derive a numerical
treatment used to model the jet. During the simulation, the upper part of the jet
is truncated. A new segment perpendicular to the hull is introduced to bound the
fluid domain. On this segment, the fluid normal velocity is constant and equal to
the tangential fluid velocity along the hull. This numerical treatment enables one
to follow the development of the jet, see figure 7. The resulting numerical solution
is in good agreement with the self-similar solution of Zhao & Faltinsen (1993). In
particular, the intersection angle between the jet and the hull is correctly predicted.
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